
SECTION B 

FOURIER 

TRANSFORM 



2.1 FOURIER SERIES 

• Usually, a signal is described as a function 

of time . 

• There are some amazing advantages if a 

signal can be expressed in the frequency 

domain. 

• Fourier transform analysis is named after 

Jean Baptiste Joseph Fourier (1768-1830).  



• A Fourier series (FS) is used for 

representing a continuous-time periodic 

signal as weighted superposition of 

sinusoids.  

• Periodic Signals  A continuous-time signal  

is said to be periodic if there exists a 

positive constant  such that  

 

   where     is the period of the signal.  
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•           : fundamental Period 

•           : fundamental frequency 

 

• Example: Periodic and aperiodic signal 
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• {xn} are called the Fourier series coefficients of the signal 

x(t). 

• The quantity                 is called the fundamental frequency 

of the signal x(t) 

• The Fourier series expansion can be expressed in terms of 

angular frequency                by 
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• Discrete spectrum - We may write                     , where  

              gives the magnitude of the nth harmonic and           
gives its phase.                       
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• Example: Let x(t) denote the periodic signal depicted in 

Figure 2.2 
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is a rectangular pulse. Determine the Fourier series 

expansion for this signal. 



Solution: We first observe that the period of the signal is T0 

and  
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Therefore, we have 
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Superposition of  0
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2.2.2 Basic Properties of the 

Fourier Transform 
• Linearity Property: Given signals          and          with 

the Fourier transforms 

 

 

    The Fourier transform of                          is  
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• Duality Property: 

 

 

    Proof:  
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• Time Shift Property: A shift of       in the time origin 

causes a phase shift of                 in the frequency domain. 

 

 

     Proof: 
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• Scaling Property: For any real            , we have 

 

 

• Proof:  

    Case 1:  

 

     Let           ; we have  

 

     Case 2: 

 

     Let              ; we have 
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• Convolution Property: If the signal         and        both 

possess Fourier transforms, then 

 

    Proof: 

   Convolution 
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• Modulation Property: The Fourier transform of                 

is                   , and the Fourier transform of 
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    Proof: 
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• Parseval’s Property: If the Fourier transforms of          

and          are denoted by            and           , respectively, 

then 
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• proof: 
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• Rayleigh’s Property: If X(f) is the Fourier transform of 

x(t), then 

 

 

 

Proof: 
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Parseval’s Property 



• Autocorrelation Property: The (time) autocorrelation 

function of the aperiodic signal x(t) is denoted by            

and is defined by  

 

     

    The autocorrelation property states that 

 

 

• Differentiation Property: The Fourier transform of the 

derivative of a signal can be obtained from the relation 
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• Integration Property: The Fourier transform of the 

integral of a signal can be determined from the relation 

 

 

 

• Moments Property: If                          , then                  , 

the nth moment of x(t), can be obtained from the relation 
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