SECTION B

FOURIER TRANSFORM

2.1 FOURIER SERIES

- Usually, a signal is described as a function of time .
- There are some amazing advantages if a signal can be expressed in the frequency domain.
- Fourier transform analysis is named after Jean Baptiste Joseph Fourier (1768-1830).

- A *Fourier series* (FS) is used for representing a continuous-time periodic signal as weighted superposition of sinusoids.
- **Periodic Signals** A continuous-time signal is said to be *periodic* if there exists a positive constant such that

$$x(t) = x(t + T_0)$$

where T_0 is the period of the signal.

- T_0 : fundamental Period
- $f_0 = \frac{1}{T_0}$: fundamental frequency
- Example: Periodic and aperiodic signal

- {*x_n*} are called the Fourier series coefficients of the signal *x(t)*.
- The quantity $f_0 = \frac{1}{T_0}$ is called the fundamental frequency of the signal x(t)
- The Fourier series expansion can be expressed in terms of angular frequency $\omega_0 = 2\pi f_0$ by

$$x_n = \frac{\omega_0}{2\pi} \int_{\alpha}^{\alpha + 2\pi/\omega_0} x(t) e^{-jn\omega_0 t} dt$$

and

$$x(t) = \sum_{n=-\infty}^{\infty} x_n e^{jn\omega_0 t}$$

• Discrete spectrum - We may write $x_n = |x_n| e^{j \angle x_n}$, where $|x_n|$ gives the magnitude of the *n*th harmonic and $\angle x_n$ gives its phase.

Figure 2.1 The discrete spectrum of x(t).

• Example: Let *x*(*t*) denote the periodic signal depicted in Figure 2.2

is a rectangular pulse. Determine the Fourier series expansion for this signal.

Solution: We first observe that the period of the signal is Toand $1 e^{T/2} = -\frac{jn^2 \pi t}{T}$

$$x_{n} = \frac{1}{T_{0}} \int_{-T_{0}/2}^{T_{0}/2} x(t) e^{-Jn} \frac{T_{0}}{T_{0}} dt$$

$$= \frac{1}{T_{0}} \int_{-\tau/2}^{\tau/2} 1 e^{-Jn} \frac{2\pi t}{T_{0}} dt$$

$$= \frac{1}{T_{0}} \frac{T_{0}}{-Jn2\pi} \left[e^{-Jn} \frac{n\tau}{T_{0}} - e^{Jn} \frac{n\tau}{T_{0}} \right]$$

$$= \frac{1}{\pi n} \sin \left(\frac{n\pi \tau}{T_{0}} \right)$$

$$= \frac{\tau}{T_{0}} \operatorname{sinc} \left(\frac{n\tau}{T_{0}} \right)$$

$$\operatorname{sinc}(x) = \frac{\sin(\pi x)}{\pi x}$$

Therefore, we have

$$x(t) = \sum_{n=-\infty}^{\infty} \frac{\tau}{T_0} \operatorname{sinc}\left(\frac{n\tau}{T_0}\right) e^{jn\frac{2\pi t}{T_0}}$$

Figure 2.3 The discrete spectrum of the rectangular pulse train.

Superposition of $x_M(t) = \sum_{n=-M}^{M} \frac{\tau}{T_0} \sin c \left(\frac{n\tau}{T_0}\right) e^{jn \frac{2\pi t}{T_0}}.$

 $\tau = 0.5, T_0 = 2; \lim_{M \to \infty} x_M(t) = x(t).$

 Table 1: Properties of the Continuous-Time Fourier Series

$$x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t} = \sum_{k=-\infty}^{+\infty} a_k e^{jk(2\pi/T)t}$$
$$a_k = \frac{1}{T} \int_T x(t) e^{-jk\omega_0 t} dt = \frac{1}{T} \int_T x(t) e^{-jk(2\pi/T)t} dt$$

Property	Periodic Signal	Fourier Series Coefficients
	$ \begin{cases} x(t) \\ y(t) \end{cases} $ Periodic with period T and fundamental frequency $\omega_0 = 2\pi/T$	a_k b_k
Linearity Time-Shifting Frequency-Shifting Conjugation Time Reversal	$Ax(t) + By(t)$ $x(t - t_0)$ $e^{jM\omega_0 t} = e^{jM(2\pi/T)t}x(t)$ $x^*(t)$ $x(-t)$	$Aa_{k} + Bb_{k}$ $a_{k}e^{-jk\omega_{0}t_{0}} = a_{k}e^{-jk(2\pi/T)t_{0}}$ a_{k-M} a_{-k}^{*} a_{-k}
Time Scaling Periodic Convolution	$x(\alpha t), \alpha > 0$ (periodic with period T/α) $\int_T x(\tau)y(t-\tau)d\tau$	a_k Ta_kb_k
Multiplication	x(t)y(t)	$\sum_{l=-\infty}^{+\infty} a_l b_{k-l}$
Differentiation	$\frac{dx(t)}{dt}$	$jk\omega_0 a_k = jk\frac{2\pi}{T}a_k$
Integration	$\int_{-\infty}^{t} x(t)dt \text{(finite-valued and} \\ \text{periodic only if } a_0 = 0)$	$\begin{pmatrix} \frac{1}{jk\omega_0} \\ a_k = a^* \\ $
Conjugate Symmetry for Real Signals	x(t) real	$\begin{cases} \Re e\{a_k\} = \Re e\{a_{-k}\} \\ \Im m\{a_k\} = -\Im m\{a_{-k}\} \\ a_k = a_{-k} \\ \partial a_k = -\partial a_k \end{cases}$
Real and Even Sig- nals	x(t) real and even	$(\downarrow a_k = \downarrow a_{-k} = a_k$ a_k real and even
Real and Odd Signals	x(t) real and odd	a_k purely imaginary and odd
Even-Odd Decompo- sition of Real Signals	$\begin{cases} x_e(t) = \mathcal{E}v\{x(t)\} & [x(t) \text{ real}] \\ x_o(t) = \mathcal{O}d\{x(t)\} & [x(t) \text{ real}] \end{cases}$	$\Re e\{a_k\}$ $j\Im m\{a_k\}$

Parseval's Relation for Periodic Signals

$$\frac{1}{T} \int_{T} |x(t)|^2 dt = \sum_{k=-\infty}^{+\infty} |a_k|^2$$

2.2.2 Basic Properties of the Fourier Transform

• Linearity Property: Given signals $x_1(t)$ and $x_2(t)$ with the Fourier transforms

F $[x_1(t)] = X_1(f)$ F $[x_2(t)] = X_2(f)$. The Fourier transform of $\alpha x_1(t) + \beta x_2(t)$ is

F $[\alpha x_1(t) + \beta x_2(t)] = \alpha X_1(f) + \beta X_2(f).$

• Duality Property:

If $X(f) = \mathsf{F}[x(t)]$, then $x(f) = \mathsf{F}[X(-t)]$ and $x(-f) = \mathsf{F}[X(t)]$. **Proof:**

$$\mathsf{F} [X(-t)] = \int_{-\infty}^{\infty} X(-t)e^{-j2\pi ft}dt$$
$$= \int_{-\infty}^{\infty} X(t)e^{j2\pi ft}dt$$
$$= x(f).$$

$$\mathsf{F} [X(t)] = \int_{-\infty}^{\infty} X(t) e^{-j2\pi ft} dt$$
$$= \int_{-\infty}^{\infty} X(t) e^{j2\pi(-f)t} dt$$
$$= x(-f).$$

• Time Shift Property: A shift of t_0 in the time origin causes a phase shift of $-2\pi f t_0$ in the frequency domain.

F
$$[x(t-t_0)] = e^{-j2\pi ft_0}$$
F $[x(t)].$

Proof: F $[x(t-t_0)] = \int_{-\infty}^{\infty} x(t-t_0)e^{-j2\pi ft}dt.$ Let $t' = t - t_0$ F $[x(t-t_0)] = \int_{-\infty}^{\infty} x(t')e^{-j2\pi f(t'+t_0)}dt'$ $=e^{-j2\pi ft_0}\int_{-\infty}^{\infty}x(t')e^{-j2\pi ft'}dt'$ $=e^{-j2\pi ft_0}\mathsf{F}[x(t)]=e^{-j2\pi ft_0}X(f).$ • Scaling Property: For any real $a \neq 0$, we have

$$\mathsf{F} \ [x(at)] = \frac{1}{|a|} X\left(\frac{f}{a}\right).$$

• Proof:

Case 1: a > 0 $\mathsf{F} [x(at)] = \int_{-\infty}^{\infty} x(at) e^{-j2\pi ft} dt.$ Let t' = at; we have dt = (1/a)dt' $\mathsf{F}[x(at)] = \frac{1}{a} \int_{-\infty}^{\infty} x(t') e^{-j2\pi(f/a)t'} dt' = \frac{1}{a} X\left(\frac{f}{a}\right).$ Case 2: a < 0 $\mathsf{F} [x(at)] = \int_{-\infty}^{\infty} x(at) e^{-j2\pi ft} dt.$ Let t' = at; we have dt = (1/a)dt'F $[x(at)] = \frac{1}{a} \int_{-\infty}^{\infty} x(t') e^{-j2\pi(f/a)t'} dt' = -\frac{1}{a} X\left(\frac{f}{a}\right).$ • Convolution Property: If the signal x(t) and y(t) both possess Fourier transforms, then

F [x(t) * y(t)] = F [x(t)] F [y(t)] = X(f) Y(f). Proof:

Convolution $x(t) * y(t) = \int_{-\infty}^{\infty} x(\tau) y(t-\tau) d\tau$ $\mathsf{F} [x(t) * y(t)] = \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} x(\tau) y(t-\tau) d\tau \right) e^{-j2\pi ft} dt$ $= \int_{-\infty}^{\infty} x(\tau) \left(\int_{-\infty}^{\infty} y(t-\tau) e^{-j2\pi ft} dt \right) d\tau$ $= \int_{-\infty}^{\infty} x(\tau) \left(e^{-j2\pi f\tau} Y(f) \right) d\tau$

$$= Y(f) \int_{-\infty}^{\infty} x(\tau) e^{-j2\pi f\tau} d\tau$$
$$= X(f) Y(f).$$

• Modulation Property: The Fourier transform of $x(t) e^{j2\pi f_0 t}$ is $X(f - f_0)$, and the Fourier transform of

is

$$x(t)\cos(2\pi f_0 t) = x(t)\frac{1}{2}\left(e^{j2\pi f_0 t} + e^{-j2\pi f_0 t}\right)$$

$$\frac{1}{2}X(f - f_0) + \frac{1}{2}X(f + f_0).$$

Proof:

$$\mathsf{F} \ [x(t)e^{j2\pi f_0 t}] = \int_{-\infty}^{\infty} x(t)e^{j2\pi f_0 t}e^{-j2\pi f t} dt$$

$$= \int_{-\infty}^{\infty} x(t) e^{-j2\pi (f-f_0)t} dt$$

$$= X(f-f_0).$$

• **Parseval's Property:** If the Fourier transforms of x(t) and y(t) are denoted by X(f) and Y(f), respectively, then

$$\int_{-\infty}^{\infty} x(t) y^*(t) dt = \int_{-\infty}^{\infty} X(f) Y^*(f) df.$$

• proof:

$$\int_{-\infty}^{\infty} x(t) y^{*}(t) dt = \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} X(u) e^{j2\pi u t} du \right) \left(\int_{-\infty}^{\infty} Y(v) e^{j2\pi v t} dv \right)^{*} dt$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} X(u) Y^{*}(v) e^{j2\pi u t} e^{-j2\pi v t} dt dv du$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} X(u) Y^{*}(v) \left(\int_{-\infty}^{\infty} e^{j2\pi (u-v)t} dt \right) dv du$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} X(u) Y^{*}(v) \delta(u-v) dv du$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} X(u) Y^{*}(u) \delta(u-v) dv du$$

$$= \int_{-\infty}^{\infty} X(u) Y^{*}(u) du$$

$$= \int_{-\infty}^{\infty} X(t) Y^{*}(t) dt$$

• **Rayleigh's Property:** If *X*(*f*) is the Fourier transform of *x*(*t*), then

$$\int_{-\infty}^{\infty} |x(t)|^2 dt = \int_{-\infty}^{\infty} |X(f)|^2 df.$$

Proof:

$$\int_{-\infty}^{\infty} |x(t)|^2 dt = \int_{-\infty}^{\infty} x(t) x^*(t) dt = \int_{-\infty}^{\infty} X(f) X^*(f) df = \int_{-\infty}^{\infty} |X(f)|^2 df.$$
Parseval's Property

• Autocorrelation Property: The (time) autocorrelation function of the aperiodic signal x(t) is denoted by $R_x(\tau)$ and is defined by

$$R_{x}(\tau) = \int_{-\infty}^{\infty} x(t) x^{*}(t-\tau) dt.$$

The autocorrelation property states that

F
$$[R_x(\tau)] = |X(f)|^2$$
.

• **Differentiation Property:** The Fourier transform of the derivative of a signal can be obtained from the relation

$$\mathsf{F} \left[\frac{d}{dt}x(t)\right] = j2\pi f X(f).$$

• **Integration Property:** The Fourier transform of the integral of a signal can be determined from the relation

$$\mathsf{F}\left[\int_{-\infty}^{t} x(\tau)d\tau\right] = \frac{X(f)}{j2\pi f} + \frac{1}{2}X(0)\delta(f).$$

• Moments Property: If F[x(t)] = X(f), then $\int_{-\infty}^{\infty} t^n x(t) dt$, the *n*th moment of x(t), can be obtained from the relation

$$\int_{-\infty}^{\infty} t^n x(t) dt = \left(\frac{j}{2\pi}\right)^n \frac{d^n}{df^n} X(f) \bigg|_{f=0}^{\infty}$$

Time Domain $(x(t))$	Frequency Domain $(X(f))$
$\delta(t)$	1
1	$\delta(f)$
$\delta(t-t_0)$	$e^{-j2\pi ft_0}$
$e^{j2\pi f_0 t}$	$\delta(f-f_0)$
$\cos(2\pi f_0 t)$	$\frac{1}{2}\delta(f-f_0) + \frac{1}{2}\delta(f+f_0)$
$\sin(2\pi f_0 t)$	$-\frac{1}{2i}\delta(f+f_0)+\frac{1}{2i}\delta(f-f_0)$
$(1, t < \frac{1}{2})$	2, 2, 2,
$\Pi(t) = \begin{cases} \frac{1}{2}, & t = \pm \frac{1}{2} \end{cases}$	$\operatorname{sinc}(f)$
0. otherwise	
sinc(t)	$\Pi(f)$
$\int t + 1, -1 \le t < 0$	
$\Lambda(t) = \begin{cases} -t+1, & 0 \le t < 1 \end{cases}$	$\operatorname{sinc}^2(f)$
0, otherwise	
$\operatorname{sinc}^2(t)$	$\Lambda(f)$
$e^{-\alpha t}u_{-1}(t), \alpha > 0$	$\frac{1}{\alpha + j2\pi f}$
$te^{-\alpha t}u_{-1}(t), \alpha > 0$	$\frac{1}{(\alpha+i2\pi f)^2}$
$e^{-lpha t }$	$\frac{2\alpha}{\alpha^2 + (2-5)^2}$
$e^{-\pi t^2}$	$\alpha^2 + (2\pi f)^2$
e $(1 t > 0)$	E ~
$sgn(t) = \begin{cases} 1, & t > 0 \\ -1, & t < 0 \end{cases}$	$1/(i\pi f)$
$\begin{bmatrix} 0, & t = 0 \end{bmatrix}$	-/ (J ** J /
$u_{-1}(t)$	$\frac{1}{2}\delta(f) + \frac{1}{i2\pi f}$
$\delta'(t)$	$j2\pi f$
$\delta^{(n)}(t)$	$(j2\pi f)^n$
$\frac{1}{t}$	$-j\pi \operatorname{sgn}(f)$
$\sum_{n=+\infty}^{n=+\infty} \delta(t-nT_0)$	$\frac{1}{2}\sum_{n=+\infty}^{n=+\infty}\delta(f-\frac{n}{2})$

TABLE 2.1	TABLE OF FOURIER TRANSFORMS	-

Signal	Fourier transform	Fourier series coefficients (if periodic)
$\sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t}$	$2\pi \sum_{k=-\infty}^{+\infty} a_k \delta(\omega - k\omega_0)$	a_k
$e^{j\omega_0 t}$	$2\pi\delta(\omega-\omega_0)$	$a_1 = 1$ $a_k = 0$, otherwise
$\cos \omega_0 t$	$\pi[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]$	$a_1 = a_{-1} = \frac{1}{2}$ $a_k = 0, \text{otherwise}$
$\sin \omega_0 t$	$\frac{\pi}{j}[\delta(\omega-\omega_0)-\delta(\omega+\omega_0)]$	$a_1 = -a_{-1} = \frac{1}{2j}$ $a_k = 0, \text{otherwise}$
x(t) = 1	$2\pi\delta(\omega)$	$a_0 = 1, a_k = 0, \ k \neq 0$ (this is the Fourier series rep- (resentation for any choice of) T > 0
Periodic square wave $x(t) = \begin{cases} 1, & t < T_1 \\ 0, & T_1 < t \le \frac{T}{2} \end{cases}$ and x(t+T) = x(t)	$\sum_{k=-\infty}^{+\infty} \frac{2\sin k\omega_0 T_1}{k} \delta(\omega - k\omega_0)$	$\frac{\omega_0 T_1}{\pi} \operatorname{sinc} \left(\frac{k\omega_0 T_1}{\pi}\right) = \frac{\sin k\omega_0 T_1}{k\pi}$
$\sum_{n=-\infty}^{+\infty} \delta(t - nT)$	$\frac{2\pi}{T}\sum_{k=-\infty}^{+\infty}\delta\left(\omega-\frac{2\pi k}{T}\right)$	$a_k = \frac{1}{T}$ for all k
$x(t) \begin{cases} 1, & t < T_1 \\ 0, & t > T_1 \end{cases}$	$\frac{2\sin\omega T_1}{\omega}$	
$\frac{\sin Wt}{\pi t}$	$X(j\omega) = \begin{cases} 1, & \omega < W\\ 0, & \omega > W \end{cases}$	
$\delta(t)$	1	
u(t)	$\frac{1}{j\omega} + \pi\delta(\omega)$	
$\delta(t-t_0)$	$e^{-j\omega t_0}$	
$e^{-at}u(t), \Re e\{a\} > 0$	$\frac{1}{a+j\omega}$	
$te^{-at}u(t), \Re e\{a\} > 0$	$\frac{1}{(a+j\omega)^2}$	
$\frac{t^{n-1}}{(n-1)!}e^{-at}u(t),\\ \Re e\{a\} > 0$	$\frac{1}{(a+j\omega)^n}$	

Table 4: Basic Continuous-Time Fourier Transform Pairs

Table 3: Properties of the Continuous-Time Fourier Transform

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega$$
$$X(j\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt$$

Property	Aperiodic Signal	Fourier transform
	x(t) y(t)	$\begin{array}{c} X(j\omega) \\ Y(j\omega) \end{array}$
		x (j=)
Linearity	ax(t) + by(t)	$aX(j\omega) + bY(j\omega)$
Time-shifting	$x(t-t_0)$	$e^{-j\omega t_0}X(j\omega)$
Frequency-shifting	$e^{j\omega_0 t}x(t)$	$X(j(\omega-\omega_0))$
Conjugation	$x^*(t)$	$X^*(-j\omega)$
Time-Reversal	x(-t)	$X(-j\omega)$
Time- and Frequency-Scaling	x(at)	$\frac{1}{ a }X\left(\frac{j\omega}{a}\right)$
Convolution	x(t) * y(t)	$X(j\omega)Y(j\omega)$
Multiplication	x(t)y(t)	$\frac{1}{2\pi}X(j\omega)*Y(j\omega)$
Differentiation in Time	$\frac{d}{dt}x(t)$	$j\omega X(j\omega)$
Integration	$\int_{0}^{t} x(t)dt$	$\frac{1}{i\omega}X(j\omega) + \pi X(0)\delta(\omega)$
	$J_{-\infty}$	\int_{a}^{b}
Differentiation in Frequency	tx(t)	$j\frac{\alpha}{d\omega}X(j\omega)$
Conjugate Symmetry for Real		$\begin{cases} \mathcal{X}(j\omega) = X^*(-j\omega) \\ \Re e\{X(j\omega)\} = \Re e\{X(-j\omega)\} \end{cases}$
Signals	x(t) real	$\begin{cases} \Im m\{X(j\omega)\} = -\Im m\{X(-j\omega) \\ X(j\omega) = X(-j\omega) \\ X(j\omega) = X(-j\omega) \end{cases}$
Symmetry for Real and Even	r(t) real and even	$(\mathfrak{Z} \Lambda (j\omega) = -\mathfrak{Z} \Lambda (-j\omega)$
Signals	a (c) rear and even	A (Jw) rear and even
Symmetry for Real and Odd	x(t) real and odd	$X(i\omega)$ purely imaginary and c
Signals		
Signals Even-Odd Decomposition for	$x_e(t) = \mathcal{E}v\{x(t)\}$ [x(t) real]	$\Re e\{X(j\omega)\}$

Parseval's Relation for Aperiodic Signals $\int_{-\infty}^{+\infty} |x(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{+\infty} |X(j\omega)|^2 d\omega$