SECTION B

FOURIER TRANSFORM

2.1 FOURIER SERIES

- Usually, a signal is described as a function of time .
- There are some amazing advantages if a signal can be expressed in the frequency domain.
- Fourier transform analysis is named after Jean Baptiste Joseph Fourier (1768-1830).
- A Fourier series (FS) is used for representing a continuous-time periodic signal as weighted superposition of sinusoids.
- Periodic Signals A continuous-time signal is said to be periodic if there exists a positive constant such that

$$
x(t)=x\left(t+T_{0}\right)
$$

where T_{0} is the period of the signal.

- T_{0} : fundamental Period
- $f_{0}=\frac{1}{T_{0}}$: fundamental frequency
- Example: Periodic and aperiodic signal

(a)
(b)
- $\left\{x_{n}\right\}$ are called the Fourier series coefficients of the signal $x(t)$.
- The quantity $f_{0}=\frac{1}{T_{0}}$ is called the fundamental frequency of the signal $x(t)$
- The Fourier series expansion can be expressed in terms of angular frequency $\omega_{0}=2 \pi f_{0}$ by

$$
x_{n}=\frac{\omega_{0}}{2 \pi} \int_{\alpha}^{\alpha+2 \pi / \omega_{0}} x(t) e^{-j n \omega_{0} t} d t
$$

and

$$
x(t)=\sum_{n=-\infty}^{\infty} x_{n} e^{j n \omega_{0} t}
$$

- Discrete spectrum - We may write $x_{n}=\left|x_{n}\right| e^{j\left\langle x_{n}\right.}$, where $\left|x_{n}\right|$ gives the magnitude of the nth harmonic and $\angle x_{n}$ gives its phase.

Figure 2.1 The discrete spectrum of $x(t)$.

- Example: Let $x(t)$ denote the periodic signal depicted in Figure 2.2

Figure 2.2 Periodic signal $x(t)$.

$$
x(t)=\sum_{n=-\infty}^{\infty} \Pi\left(\frac{t-n T_{0}}{\tau}\right), \quad T_{0}>\tau
$$

where

$$
\Pi(t)=\left\{\begin{array}{lc}
1, & |t|<\frac{1}{2} \\
\frac{1}{2}, & |t|=\frac{1}{2} \\
0, & \text { otherwise }
\end{array}\right.
$$

is a rectangular pulse. Determine the Fourier series expansion for this signal.

Solution: We first observe that the period of the signal is T_{0} and

$$
\begin{aligned}
x_{n} & =\frac{1}{T_{0}} \int_{-T_{0} / 2}^{T_{0} / 2} x(t) e^{-j n \frac{2 \pi t}{T_{0}}} d t \\
& =\frac{1}{T_{0}} \int_{-\tau / 2}^{\tau / 2} 1 e^{-j n \frac{2 \pi t}{T_{0}}} d t \\
& =\frac{1}{T_{0}} \frac{T_{0}}{j n 2 \pi}\left[e^{-j n \frac{n \tau}{T_{0}}}-e^{j n \frac{n \tau}{T_{0}}}\right] \\
& =\frac{1}{\pi n} \sin \left(\frac{n \pi \tau}{T_{0}}\right) \\
& =\frac{\tau}{T_{0}} \operatorname{sinc}\left(\frac{n \tau}{T_{0}}\right)
\end{aligned}
$$

Therefore, we have

$$
x(t)=\sum_{n=-\infty}^{\infty} \frac{\tau}{T_{0}} \operatorname{sinc}\left(\frac{n \tau}{T_{0}}\right) e^{j n \frac{2 \pi t}{T_{0}}}
$$

Figure 2.3 The discrete spectrum of the rectangular pulse train.

Superposition of $x_{n}(t)=\sum_{n=-M}^{M} \frac{\tau}{T_{0}} \sin c\left(\frac{n \tau}{T_{0}}\right) e^{j n^{2 \pi t}}$. $\tau=0.5, T_{0}=2 ; \lim _{M \rightarrow \infty} x_{M}(t)=x(t)$.

Table 1: Properties of the Continuous-Time Fourier Series

$$
\begin{gathered}
x(t)=\sum_{k=-\infty}^{+\infty} a_{k} e^{j k \omega_{0} t}=\sum_{k=-\infty}^{+\infty} a_{k} e^{j k(2 \pi / T) t} \\
a_{k}=\frac{1}{T} \int_{T} x(t) e^{-j k \omega_{0} t} d t=\frac{1}{T} \int_{T} x(t) e^{-j k(2 \pi / T) t} d t
\end{gathered}
$$

Property

Parseval's Relation for Periodic Signals

$$
\frac{1}{T} \int_{T}|x(t)|^{2} d t=\sum_{k=-\infty}^{+\infty}\left|a_{k}\right|^{2}
$$

2.2.2 Basic Properties of the Fourier Transform

- Linearity Property: Given signals $x_{1}(t)$ and $x_{2}(t)$ with the Fourier transforms

$$
\begin{aligned}
& \mathrm{F} \quad\left[x_{1}(t)\right]=X_{1}(f) \\
& \mathrm{F} \quad\left[x_{2}(t)\right]=X_{2}(f) .
\end{aligned}
$$

The Fourier transform of $\alpha x_{1}(t)+\beta x_{2}(t)$ is

$$
\mathrm{F}\left[\alpha x_{1}(t)+\beta x_{2}(t)\right]=\alpha X_{1}(f)+\beta X_{2}(f) .
$$

- Duality Property:

If $X(f)=\mathrm{F} \quad[x(t)]$, then $x(f)=\mathrm{F} \quad[X(-t)]$ and $x(-f)=\mathrm{F}[X(t)]$.

Proof:

$$
\begin{aligned}
\mathrm{F}[X(-t)] & =\int_{-\infty}^{\infty} X(-t) e^{-j 2 \pi t t} d t \\
& =\int_{-\infty}^{\infty} X(t) e^{j 2 \pi f t} d t \\
& =x(f) . \\
\mathrm{F}[X(t)] & =\int_{-\infty}^{\infty} X(t) e^{-j 2 \pi f t} d t \\
& =\int_{-\infty}^{\infty} X(t) e^{j 2 \pi(-f) t} d t \\
& =x(-f) .
\end{aligned}
$$

- Time Shift Property: A shift of t_{0} in the time origin causes a phase shift of $-2 \pi f t_{0}$ in the frequency domain.

$$
\mathrm{F}\left[x\left(t-t_{0}\right)\right]=e^{-j 2 \pi t_{0}} \mathrm{~F} \quad[x(t)] .
$$

Proof:

$$
\mathrm{F}\left[x\left(t-t_{0}\right)\right]=\int_{-\infty}^{\infty} x\left(t-t_{0}\right) e^{-j 2 \pi f t} d t
$$

Let $t^{\prime}=t-t_{0}$

$$
\begin{aligned}
\mathrm{F}\left[x\left(t-t_{0}\right)\right] & =\int_{-\infty}^{\infty} x\left(t^{\prime}\right) e^{-j 2 \pi f\left(t^{\prime}+t_{0}\right)} d t^{\prime} \\
& =e^{-j 2 \pi f t_{0}} \int_{-\infty}^{\infty} x\left(t^{\prime}\right) e^{-j 2 \pi f t^{\prime}} d t^{\prime} \\
& =e^{-j 2 \pi f t_{0}} \mathrm{~F}[x(t)]=e^{-j 2 \pi f t_{0}} X(f)
\end{aligned}
$$

- Scaling Property: For any real $a \neq 0$, we have

$$
\mathrm{F} \quad[x(a t)]=\frac{1}{|a|} X\left(\frac{f}{a}\right) .
$$

- Proof:

Case 1: $a>0$

$$
\mathrm{F}[x(a t)]=\int_{-\infty}^{\infty} x(a t) e^{-j 2 \pi f t} d t .
$$

Let $t^{\prime}=a t$; we have $d t=(1 / a) d t^{\prime}$

$$
\mathrm{F}[x(a t)]=\frac{1}{a} \int_{-\infty}^{\infty} x\left(t^{\prime}\right) e^{-j 2 \pi(f / a) t^{\prime}} d t^{\prime}=\frac{1}{a} X\left(\frac{f}{a}\right)
$$

Case 2: $a<0$

$$
\mathrm{F}[x(a t)]=\int_{-\infty}^{\infty} x(a t) e^{-j 2 \pi f t} d t .
$$

Let $t^{\prime}=a t$; we have $d t=(1 / a) d t^{\prime}$

$$
\mathrm{F}[x(a t)]=\frac{1}{a} \int_{\infty}^{-\infty} x\left(t^{\prime}\right) e^{-j 2 \pi(f / a) t^{\prime}} d t^{\prime}=-\frac{1}{a} X\left(\frac{f}{a}\right)
$$

- Convolution Property: If the signal $x(t)$ and $y(t)$ both possess Fourier transforms, then

$$
\mathrm{F}[x(t) * y(t)]=\mathrm{F}[x(t)] \mathrm{F}[y(t)]=X(f) Y(f) .
$$

Proof:
Convolution $\quad x(t) * y(t)=\int_{-\infty}^{\infty} x(\tau) y(t-\tau) d \tau$

$$
\begin{aligned}
\mathrm{F}[x(t) * y(t)] & =\int_{-\infty}^{\infty}\left(\int_{-\infty}^{\infty} x(\tau) y(t-\tau) d \tau\right) e^{-j 2 \pi f t} d t \\
& =\int_{-\infty}^{\infty} x(\tau)\left(\int_{-\infty}^{\infty} y(t-\tau) e^{-j 2 \pi f t} d t\right) d \tau \\
& =\int_{-\infty}^{\infty} x(\tau)\left(e^{-j 2 \pi f \tau} Y(f)\right) d \tau \\
& =Y(f) \int_{-\infty}^{\infty} x(\tau) e^{-j 2 \pi f \tau} d \tau \\
& =X(f) Y(f) .
\end{aligned}
$$

- Modulation Property: The Fourier transform of $x(t) e^{j 2 \pi f_{0} t}$ is $\quad X\left(f-f_{0}\right)$, and the Fourier transform of
is

$$
x(t) \cos \left(2 \pi f_{0} t\right)=x(t) \frac{1}{2}\left(e^{j 2 \pi f_{0} t}+e^{-j 2 \pi f_{0} t}\right)
$$

$$
\frac{1}{2} X\left(f-f_{0}\right)+\frac{1}{2} X\left(f+f_{0}\right) .
$$

Proof:

$$
\begin{aligned}
\mathrm{F}\left[x(t) e^{j 2 \pi f_{0} t}\right] & =\int_{-\infty}^{\infty} x(t) e^{j 2 \pi f_{0} t} e^{-j 2 \pi f t} d t \\
& =\int_{-\infty}^{\infty} x(t) e^{-j 2 \pi\left(f-f_{0}\right) t} d t \\
& =X\left(f-f_{0}\right)
\end{aligned}
$$

- Parseval's Property: If the Fourier transforms of $x(t)$ and $y(t)$ are denoted by $X(f)$ and $Y(f)$, respectively, then

$$
\int_{-\infty}^{\infty} x(t) y^{*}(t) d t=\int_{-\infty}^{\infty} X(f) Y^{*}(f) d f .
$$

- proof:

$$
\begin{aligned}
\int_{-\infty}^{\infty} x(t) y^{*}(t) d t & =\int_{-\infty}^{\infty}\left(\int_{-\infty}^{\infty} X(u) e^{j 2 \pi u t} d u\right)\left(\int_{-\infty}^{\infty} Y(v) e^{j 2 \pi v t} d v\right)^{*} d t \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} X(u) Y^{*}(v) e^{j 2 \pi u t} e^{-j 2 \pi v t} d t d v d u \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} X(u) Y^{*}(\psi)\left(\int_{-\infty}^{\infty} e^{j 2 \pi(u-v) t} d t\right) d v d u \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} X(u) Y^{*}(\sqrt{\psi} \delta(u-\psi) d v d u \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} X(u) Y^{*}(u) \delta(u-v) d v d u \\
& =\int_{-\infty}^{\infty} X(u) Y^{*}(u) d u \\
& =\int_{-\infty}^{\infty} X(f) Y^{*}(f) d f .
\end{aligned}
$$

- Rayleigh's Property: If $X(f)$ is the Fourier transform of $x(t)$, then

$$
\int_{-\infty}^{\infty}|x(t)|^{2} d t=\int_{-\infty}^{\infty}|X(f)|^{2} d f
$$

Proof:

$$
\begin{gathered}
\int_{-\infty}^{\infty}|x(t)|^{2} d t=\int_{-\infty}^{\infty} x(t) x^{*}(t) d t=\int_{-\infty}^{\infty} X(f) X^{*}(f) d f=\int_{-\infty}^{\infty}|X(f)|^{2} d f \\
\text { Parseval's Property }
\end{gathered}
$$

- Autocorrelation Property: The (time) autocorrelation function of the aperiodic signal $x(t)$ is denoted by $R_{x}(\tau)$ and is defined by

$$
R_{x}(\tau)=\int_{-\infty}^{\infty} x(t) x^{*}(t-\tau) d t .
$$

The autocorrelation property states that

$$
\mathrm{F}\left[R_{x}(\tau)\right]=|X(f)|^{2} .
$$

- Differentiation Property: The Fourier transform of the derivative of a signal can be obtained from the relation

$$
\mathrm{F}\left[\frac{d}{d t} x(t)\right]=j 2 \pi f X(f) .
$$

- Integration Property: The Fourier transform of the integral of a signal can be determined from the relation

$$
\mathrm{F}\left[\int_{-\infty}^{t} x(\tau) d \tau\right]=\frac{X(f)}{j 2 \pi f}+\frac{1}{2} X(0) \delta(f)
$$

- Moments Property: If $\mathrm{F}[x(t)]=X(f)$., then $\int_{-\infty}^{\infty} t^{n} x(t) d t$, the nth moment of $x(t)$, can be obtained from the relation

$$
\int_{-\infty}^{\infty} t^{n} x(t) d t=\left.\left(\frac{j}{2 \pi}\right)^{n} \frac{d^{n}}{d f^{n}} X(f)\right|_{f=0}
$$

TABLE 2.1 TABLE OF FOURIER TRANSFORMS

Time Domain ($x(t)$)	Frequency Domain ($X(f)$)
$\delta(t)$	1
1	$\delta(f)$
$\delta\left(t-t_{0}\right)$	$e^{-j 2 \pi f t_{0}}$
$e^{j 2 \pi f_{0} t}$	$\delta\left(f-f_{0}\right)$
$\cos \left(2 \pi f_{0} t\right)$	$\frac{1}{2} \delta\left(f-f_{0}\right)+\frac{1}{2} \delta\left(f+f_{0}\right)$
$\sin \left(2 \pi f_{0} t\right)$	$-\frac{1}{2 j} \delta\left(f+f_{0}\right)+\frac{1}{2 j} \delta\left(f-f_{0}\right)$
$\Pi(t)= \begin{cases}1, & \|t\|<\frac{1}{2} \\ \frac{1}{2}, & t= \pm \frac{1}{2} \\ 0, & \text { otherwise } \\ \operatorname{sinc}(t)\end{cases}$	$\operatorname{sinc}(f)$ $\Pi(f)$
$\Lambda(t)= \begin{cases}t+1, & -1 \leq t<0 \\ -t+1, & 0 \leq t<1 \\ 0, & \text { otherwise }\end{cases}$	$\operatorname{sinc}^{2}(f)$
$\operatorname{sinc}^{2}(t)$	$\Lambda(f)$
$e^{-\alpha t} u_{-1}(t), \alpha>0$	$\frac{1}{\alpha+j 2 \pi f}$
$t e^{-\alpha t} u_{-1}(t), \alpha>0$	$\frac{1}{(\alpha+j 2 \pi f)^{2}}$
$e^{-\alpha\|t\|}$	$\frac{2 \alpha}{\alpha^{2}+(2 \pi f)^{2}}$
$e^{-\pi t^{2}}$	$e^{-\pi f^{2}}$
$\operatorname{sgn}(t)= \begin{cases}1, & t>0 \\ -1, & t<0 \\ 0, & t=0\end{cases}$	1/(jiff)
$u_{-1}(t)$	$\frac{1}{2} \delta(f)+\frac{1}{j 2 \pi f}$
$\delta^{\prime}(t)$	$j 2 \pi f$
$\delta^{(n)}(t)$	$(j 2 \pi f)^{n}$
$\frac{1}{t}$	$-j \pi \operatorname{sgn}(f)$
$\sum_{n=-\infty}^{n=+\infty} \delta\left(t-n T_{0}\right)$	$\frac{1}{T_{0}} \sum_{n=-\infty}^{n=+\infty} \delta\left(f-\frac{n}{T_{0}}\right)$

Signal	Fourier transform	Fourier series coefficients (if periodic)
$\sum_{k=-\infty}^{+\infty} a_{k} e^{j k \omega_{0} t}$	$2 \pi \sum_{k=-\infty}^{+\infty} a_{k} \delta\left(\omega-k \omega_{0}\right)$	a_{k}
$e^{j \omega_{0} t}$	$2 \pi \delta\left(\omega-\omega_{0}\right)$	$\begin{aligned} & a_{1}=1 \\ & a_{k}=0, \quad \text { otherwise } \end{aligned}$
$\cos \omega_{0} t$	$\pi\left[\delta\left(\omega-\omega_{0}\right)+\delta\left(\omega+\omega_{0}\right)\right]$	$\begin{aligned} & a_{1}=a_{-1}=\frac{1}{2} \\ & a_{k}=0, \quad \text { otherwise } \end{aligned}$
$\sin \omega_{0} t$	$\frac{\pi}{j}\left[\delta\left(\omega-\omega_{0}\right)-\delta\left(\omega+\omega_{0}\right)\right]$	$\begin{aligned} & a_{1}=-a_{-1}=\frac{1}{2 j} \\ & a_{k}=0, \quad \text { otherwise } \end{aligned}$
$x(t)=1$	$2 \pi \delta(\omega)$	$\begin{aligned} & a_{0}=1, \quad a_{k}=0, \quad k \neq 0 \\ & \binom{\text { this is the Fourier series rep- }}{\text { resentation for any choice of }} \\ & T>0 \end{aligned}$
Periodic square wave $x(t)= \begin{cases}1, & \|t\|<T_{1} \\ 0, & T_{1}<\|t\| \leq \frac{T}{2}\end{cases}$ and $x(t+T)=x(t)$	$\sum_{k=-\infty}^{+\infty} \frac{2 \sin k \omega_{0} T_{1}}{k} \delta\left(\omega-k \omega_{0}\right)$	$\frac{\omega_{0} T_{1}}{\pi} \operatorname{sinc}\left(\frac{k \omega_{0} T_{1}}{\pi}\right)=\frac{\sin k \omega_{0} T_{1}}{k \pi}$
$\sum_{n=-\infty}^{+\infty} \delta(t-n T)$	$\frac{2 \pi}{T} \sum_{k=-\infty}^{+\infty} \delta\left(\omega-\frac{2 \pi k}{T}\right)$	$a_{k}=\frac{1}{T}$ for all k
$x(t) \begin{cases}1, & \|t\|<T_{1} \\ 0, & \|t\|>T_{1}\end{cases}$	$\frac{2 \sin \omega T_{1}}{\omega}$	-
$\frac{\sin W t}{\pi t}$	$X(j \omega)= \begin{cases}1, & \|\omega\|<W \\ 0, & \|\omega\|>W\end{cases}$	-
$\delta(t)$	1	-
$u(t)$	$\frac{1}{j \omega}+\pi \delta(\omega)$	-
$\delta\left(t-t_{0}\right)$	$e^{-j \omega t_{0}}$	-
$e^{-a t} u(t), \Re e\{a\}>0$	$\frac{1}{a+j \omega}$	-
$t e^{-a t} u(t), \Re e\{a\}>0$	$\frac{1}{(a+j \omega)^{2}}$	-
$\begin{gathered} \frac{t^{n-1}}{(n-1)!} e^{-a t} u(t), \\ \Re e\{a\}>0 \end{gathered}$	$\frac{1}{(a+j \omega)^{n}}$	-

Table 3: Properties of the Continuous-Time Fourier Transform

$$
\begin{gathered}
x(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(j \omega) e^{j \omega t} d \omega \\
X(j \omega)=\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t
\end{gathered}
$$

Property

Parseval's Relation for Aperiodic Signals

$$
\int_{-\infty}^{+\infty}|x(t)|^{2} d t=\frac{1}{2 \pi} \int_{-\infty}^{+\infty}|X(j \omega)|^{2} d \omega
$$

